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ABSTRACT

Gas turbines are now extensively used in aviation, oil and gas applications and power generation. With this
increasing use in a diverse range of applications, new design and operation of modern gas turbine engines
(GTEs) are becoming more and more complex where several limitations and control modes should be fulfilled at
the same time to accomplish a safe and ideal performance for the engine. For this purpose, a constrained multi-
input multi-output (MIMO) non-linear model predictive controller (NMPC) based on neural network model
is designed to fulfill the control requirements of a Siemens SGT-A65 three-spool aero-derivative gas turbine
engine (ADGTE) used for power generation. However, the implementation of NMPC in real time has two
challenges: Firstly, the design of an accurate non-linear model, which can run many times faster than real time.
Secondly, the usage of a rapid and reliable optimization algorithm to solve the optimization problem in real
time. In this paper, a novel approaches for gas turbine engine modelling and multivariable advanced controller
design are investigated. The constrained MIMO NMPC is created based on the generalized predictive control
(GPC) algorithm as a result of its clarity, ease of use, and capacity to deal with problems in one algorithm.
In addition, seven ensembles of eight multi-input single-output (MISO) non-linear autoregressive network with
exogenous inputs (NARX) models are used as a base model for the GPC controller to predict the future process
outputs. Estimation of free and forced responses of the GPC based on the neural network (NN) model of
the plant each sampling time without performing instantaneous linearization is proposed in this study, which
reduces the NMPC optimization problem to a linear optimization problem at each sampling step. In addition,
the Hildreth’s quadratic programming algorithm is used to solve the quadratic optimization problem within
the NMPC controller, which offers ease of use and reliability in real time applications. To demonstrate the
performance of the NNGPC controller developed in this study, we have compared the performance of the neural
network generalized predictive control (NNGPC) controller to the existing controller of the SGT-A65 engine.
The simulation results show that the NNGPC has demonstrated output responses with less oscillatory behavior
and smoother control actions to the sudden variation in the electric load disturbance than those observed in
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the existing min-max controller. In addition, computation time required to solve an optimization problem was
sufficiently faster than the sampling rate that allow a real time implementation of the NNGPC controller.

1 INTRODUCTION

The importance of aero-derivative gas turbine engines (ADGTEs) in the energy industry has sparked a great
interest among manufacturers to improve the performance and increase the reliability of the engine, which in
turn requires an accurate and real time model to simulate the engine dynamics during the full operating range.
This model can be used in controller design, engine health monitoring and sensor validation. Physics based
modelling (White box model) approach has been widely used over many years in order to model gas turbine
engines Saleh (2017). However, this approach can only be used when there is enough information about the
physics of the system. In addition, a white box model has traditionally a high number of non linear equations
requiring iterative solutions which occur at the expense of computation time. The computation time challenge
is a big problem for real time modelling and model based applications. An alternative to white box models is
given by data-driven based models.

Data-driven based model (or black box model) is one of the modelling approaches which can be used when no
or little information is available about the physics of the system. In this case, a data driven model can disclose
the relations between system variables using the obtained operational input and output data from the system.
Artificial neural network (ANN) is one of the most significant methods in data-driven based modelling Asgari
et al. (2013). It presents high computation speed, which allows for real time applications. It is a fast-growing
method, which has been used in different fields of industry in recent years. It is also being heavily used in
machine learning and artificial intelligence applications. The main idea behind ANN is to create a model based
on a human brain in order to solve complex scientific and industrial problems in a variety of areas.

Neural networks can be classified into two main categories: static and dynamic neural networks Ibrahem et al.
(2019). Dynamic neural networks attracted many researchers due to their ability to represent the dynamics of gas
turbine engines. A significant number of studies across different applications have stated the advantages of dy-
namic NNs by introducing different methodologiesTayarani-Bathaie et al. (2014), Yu & Shu (2017). Among the
existing dynamic NN modelling methods, the non-linear autoregressive network with exogenous inputs (NARX)
modelling approach is considered one of the most popular. It has been used in the modelling of gas turbine en-
gines by several researchersBahlawan et al. (2017), Mehrpanahi et al. (2018).

NARX is a recurrent dynamic network with feedback connections enclosing several layers of the network.
NARX model is based on the linear ARX model, which is commonly used in time-series modelling, and is used
in many applications such as multi step ahead prediction and modelling of non-linear dynamic systems. Eqn. (1)
defines a NARX model and represents the relation between the model output and its input parametersBeale et al.
(2015),

y(t) = f(y(t− 1), · · · , y(t− ny)

, u(t− nk), · · · , u(t− nk − nu + 1))
(1)

where, ny and nu are the lags of the output and input of the system respectively. nk is the system input-output
delay and f is a non-linear function.
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As can be seen, the major challenge to the application of ANNs is to find the best structure of the network
which can represent the system. In this regard, usage of single neural model may not be able to provide accurate
prediction when it operates outside the field in which it was trained. Besides, gas turbine engines operate in
non-stationary operation conditions which may cause unseen scenarios in the observed data this increases the
complexity of the modelling operation since the NN needs to be trained with a data as large enough to cover the
entire operation conditions. This in turn increases the training time and the possibility of network over-fitting. To
address this problem, we consider to train multiple ANNs in parallel to fit the data instead of a single model. This
leads to an ensemble of neural network models. Ensemble learning approach refers to a set of models working
in parallel on tasks such as classification or regression and they are combined together in some way to obtain the
final output de Sousa et al. (2012). In this paper, we will focus on the ensemble generation for regression. The
ensemble development process can be divided into three main steps. The first step is ensemble generation, which
refers to generation of ensemble base models. The second step is ensemble pruning, which consists of selecting
a subset of the best models from the original set of models based on generalization error. Finally, ensemble
integration, a strategy to combine the base models is defined. For regression problems, ensemble integration is
done using a linear combination of the base models outputs de Sousa et al. (2012),

fen(x) =
K∑
i=1

[wi(x) ∗ fi(x)] (2)

where, wi(x) denotes the weight for the ith model, K is the number of models in the ensemble, fi(x) denotes
the output of the ith model corresponding to input x and fen(x) represents the ensemble output. Diversity is
a very important key in the ensemble generation. If all ensemble members provide the same output, there is
nothing to be gained from their combination Zhang & Ma (2012). Therefore, the ensemble members should be
different from each other while each must maintain acceptable accuracy level Amozegar & Khorasani (2016).
Two different methodologies can be considered for creating diversity among ensemble members. The first
method is heterogeneous ensemble in which ensemble members have different architectures( such as number of
neurons, training algorithm ). The second method is homogeneous ensemble in which ensemble members have
the same architectures but trained with different data sets Brown et al. (2005). The integration of a set of learned
models to improve accuracy and generalization is another important step in the ensemble generation. Ensemble
integration approaches can be divided into two categories,constant and non-constant weighting functions Merz
& Pazzani (1999). Examples of the constant weight approach are basic ensemble method (BEM), generalized
ensemble method (GEM), linear regression (LR) and median method. For the second category, the weights vary
according to performance of each ensemble member such as dynamic weighting (DW), dynamic weight with
selection (DWS)Rooney & Patterson (2007) and dynamic and on-line ensemble regression (DOER)Soares &
Araújo (2015).

Control technology has an important role in the evolution and progress of the performance, dependability, life-
time, and safety of modern GTEs. The power generated from a GTE is controlled by fuel flow to ensure that
the desired power output is fulfilled. However, the control system must also protect the engine from exceed-
ing engine limits. These limits incorporate shaft speeds, temperatures, and compressor surge. There are many
control techniques proposed to manage these requirements going back to 1952. A comprehensive survey and
investigation on the history of GTEs control techniques could be found in Jaw & Mattingly (2009).

The Min–Max control strategy is commonly utilized as the control architecture for GTEs, which is known as
a practical algorithm. A min-max controller composed of several control loops (steady state loop, max ac-
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celeration loop, max shaft loop speed, max temperature loop, and min deceleration loop), every one of which
controls the engine during certain controlling mode. These loops operate in parallel and at any moment, as
indicated by a predefined fuel control technique, one of them is selected and starts the observation Salehi &
Montazeri-GH (2020). Many studies have done for performance improvement of the min-max strategy Jafari
& Nikolaidis (2018). However, the final selection technique between the transient control loops is kept fixed
in all these researches. In addition, limit violation may happen for some variables during transient operation.
Recent investigations have demonstrated that there is no assurance for a min-max strategy with a linear compen-
sator to protect the engine from exceeding constraints during the transient state Imani & Montazeri-Gh (2017),
Montazeri-Gh & Rasti (2019).

With the desire to have more robustness and flexibility of the next generation of the GTE control systems to
accomplish ambitious objectives and extreme constraints set by governments and organizations, for example, a
decrease of nitrogen oxide (NOx) emission, a decrease of fuel consumption, and increase of engine life time, the
industry is keen on building up another advanced control strategy that will fulfill the mentioned requirements.
Model predictive control (MPC) is an advanced model-based technique, which has attracted the attention of
researchers in recent years. The application of MPC to control GTE is introduced by Vroemen and Essen
Van Essen & De Lange (2001).

The philosophy behind the construction of MPC laws is paradoxical when compared with the conventional error-
feedback control methods. Rather than creating a control action in response to the current and past errors, MPC
makes a forecast of future system behavior dependent on its open loop model, the current system state, the input
trajectory, or a disturbance entering the system. Then, it chooses the best possible input action according to a
cost function. To do this, it needs to solve an optimization problem subjected to possible constraints. Finally, it
applies the first element of the optimal selected input sequence to the plant. At each time step, this procedure is
repeated, which introduces the so-called receding horizon principle Richter (2011). Fig. 1 shows the strategy of
all MPC controllers.

Figure 1: The MPC Strategy Montazeri-Gh & Rasti (2019)

There are different MPC algorithms just differ among themselves in the onboard model used to simulate the
controlled process. The MPC algorithms which utilize for prediction linear models are usually named linear
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MPC algorithm (LMPC) Pandey et al. (2018). However, The MPC algorithms which utilize for prediction non-
linear models are usually named non-linear MPC algorithm (NMPC) Pires et al. (2018). The LMPC algorithms
are easy to use and computationally uncomplicated. However, the acquired control quality might be unsuitable
for nonlinear systems, specifically when the operating point is changed significantly and fast Kim et al. (2013).
On the other hand, the utilization of NMPC controllers that consider the non-linearities of the process infers an
improvement in the performance of the process by decreasing the effect of the disturbances and by improving the
tracking abilities of the control system. However, the usage of a non-linear model inside the NMPC algorithm
converts the control problem from a convex quadratic program to a nonconvex non-linear problem Poursafar
et al. (2010). In addition, in this circumstance, there is no assurance that the global optimum can be found
particularly in real time control when the optimum solution must be determined in a prescribed time. The
computation time challenge is a major issue for the real time implementation of the NMPC. In addition, in the
case of a model-based controller, the onboard model, which represents the plant inside the controller, must run
many times faster than real-time. Besides, it should be accurate and can represent the plant dynamics during the
full operating range.

The implementation of NMPC based on NN model is able to eliminate the most significant problems experienced
in non-linear predictive control applications, because NN gives a helpful way for modelling complex non-linear
systems with good accuracy and less computational complexity. The MPC algorithm based on NN model has
recently attracted many researchers (Rusnak et al. 1996). Two principle approaches were utilized to use a non-
linear neural model within a predictive control algorithm (Aly & Atia 2012). The first approach is to utilize
the non-linear optimization methods to calculate the optimum control actions (Lazar & Pastravanu 2002). The
second approach is to linearize the non-linear neural model each time step to get the discrete linearized model
(Mu et al. 2005). The advantage of utilizing Lineraization method over conventional non-linear design is the
avoidance of the problem of local minimums. However, this could result in a large computational load for MIMO
systems. Furthermore, the lineraized model is only an approximation of the original non-linear one. Therefore,
the obtained control quality may be unsatisfactory as mentioned before.

Based on the literature survey, we can note the following issues:

1) In the area of MIMO ANN model of gas turbine engines, the research activities used mostly one of
the following two methods to generate a nonlinear model for the MIMO engine: Either, by building
a neural network model for each output parameter (MISO) with the same structure for each one
of them and trained with the same training algorithm Bahlawan et al. (2017), or by building one
block neural model to represent the MIMO system Mehrpanahi et al. (2018), Salehi & Montazeri-
Gh (2018). However, it is more powerful, as will be shown in this paper, to use a different neural
network’s structure for each output (MISO). The idea of using different NN structures for different
outputs comes from analysis of the structure of the human brain based on its function. Human brain
consists of many complex biological neural networks; each has to perform a certain function [talk,
walk, breath and so on] as shown in Fig. 2. The main component of these neural networks are neurons.
The shape and number of the neurons in each network depend upon the function of the network. For
example, a single sensory neuron from your fingertip has an axon that extends the length of your arm,
while neurons within the brain may extend only a few millimetres. They also have different shapes
depending on their functions Khan (2018). Motor neurons that control muscle contractions have a
cell body on one end, a long axon in the middle and dendrites on the other end. Sensory neurons have
dendrites on both ends, connected by a long axon with a cell body in the middle. Inter-neurons, or
associative neurons, carry information between motor and sensory neurons as shown in Fig. 3. Based
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on these facts, to generate a neural network model for an ADGTE, we propose to build MISO neural
network model for each output. Moreover, the structure of each neural model is different according
to the function of the model (output type).

Figure 2: Functions of the human brainCASTRO (2018).

2) Most works on ensemble approach focus on classification applications for tackling the FDI problem
in gas turbine engines Lu et al. (2019), Wen et al. (2019). However, little research has been done
on the use of ensemble approach for gas turbine engine real time performance prediction Amozegar
& Khorasani (2016), Xu et al. (2017). Therefore, this paper presents a novel development approach
of the data driven model for ADGTE based on recurrent neural networks (NARX). Firstly, closed
loop experimental data preprocessing was performed as will be explained in the data acquisition and
preprocessing subsection. Secondly, generation of multiple MISO ARX models was used to identify
the order of the MISO systems to be modelled based on the experimental data.

3) The Min–Max control strategy is the most widely used control algorithm for industrial GTEs. This
strategy uses minimum and maximum mathematical functions to select the winner of different en-
gine control loops at any instantaneous time. However, recent studies (Imani & Montazeri-Gh 2017,
Montazeri-Gh & Rasti 2019) indicate that this method with linear compensators suffers from lack
of safety guarantee in fast load demands. On the other hand, MPC method, which incorporates in-
put/output constraints in its optimization process, has the potential to fulfill the control requirements
of an industrial GTEs.

4) The LMPC algorithms are simple to design and are computationally uncomplicated. Unfortunately,
the obtained control quality may be unsatisfactory for nonlinear systems, in particular when the op-
erating point is changed significantly and fast. In such cases non-linear models are straightforward,
but their identification is more demanding. Furthermore, complexity of NMPC algorithms is higher
than that of the classical linear ones. The implementation of NMPC of ADGTE in real time has two
challenges: Firstly, the design of accurate non-linear model which can run many times faster than
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Figure 3: Basic neuron typesKhan (2018).

real time. Secondly, the usage of rapid and reliable optimization algorithm to solve the optimization
problem in real time.

5) The resulting implementation of NMPC based on NN model is able to eliminate the most significant
obstacles encountered in non-linear predictive control applications by facilitating the development of
non-linear models and providing a rapid, reliable solution to the control algorithm.

6) The use of NN models together with the GPC algorithm is a promising technique. Most applications
of GPC algorithm based on NN model have used instantaneous linearization of the NN model at each
time step. In this thesis, to design an NMPC of ADGTE, a trade-off approach between usage of non-
linear model and successive linearization approach is used in order to reduce the computation effort.
In addition, in order to solve this problem, Hildreth’s quadratic programming procedure is utilized
which offers simplicity and reliability in real-time implementation.

The rest of this paper is organized as follows: Section two illustrates the specifications of the ADGTE used in
this study and Section three provides a detailed look at the methodology of building operation of ensemble of
MISO NARX models for an ADGTE. Section four presents an overview of the current min-max controller of
the SGT-A65 engine. Section five presents and discusses the results obtained from this study and Section six
presents the conclusion.

2 GAS TURBINE ENGINE DESCRIPTION

2.1 Overview of the SGT-A65 Engine Configuration

In this paper, Siemens (SGT-A65) three spool ADGTE was modelled. The Siemens SGT-A65 is one of the
world’s leading ADGTE used in the power generation and oil-and-gas compression industries. It is the industrial
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version of the Rolls-Royce Trent 60 high by-pass-ratio aero GTE, which has high efficiency, and in service on
the Airbus A330 and Boeing 777. The SGT-A65 is capable of producing 65 MW at thermal efficiency of
42% (H.I.H. Saravanamuttoo 2017). It has a two-stage LPC, eight-stage IPC, and six-stage HPC with dry low
emission combustion. Furthermore, both HPT and IPT consist of a single stage each and the LPT has five stages
used to drive the LPC and the power generator at fixed speed (3600 rpm used for power generation at 60 Hz,
which represents the engine power turbine (PT). Fig.4 shows a sketch of SGT-A65 aero derivative gas turbine
engine with its stations numbers. In addition, the engine specifications are illustrated in Table 1.

Figure 4: Sketch of three spool aero derivative gas turbine engine (SGT-A65).

Table 1: SGT-A65 engine technical data.

Parameter Value

Exhaust mass flow rate 171 kg/s
Output power 65 MW
Power turbine speed 3600 rpm
Total compression ratio 38 : 1

Exhaust temperature 437 oC

2.2 Overview of the SGT-A65 Engine Current Min-Max Control System Architecture

The Industrial Trent (SGT-A65) engine control system schedules the fuel flow to maintain the engine power
(PW) or speed to the desired level (3600 rpm). While, maintaining the other parameters of the engine, such
as spool speeds (N), temperatures (T) and pressures (P) within its operating limits at all times. The min-max
controller with PI compensator in each loop is currently used for the SGT-A65 ADGTE.

The overall control architecture of the SGT-A65 engine is shown in Fig. 5. As can be seen, the fuel control
system based on multiple SISO loops all vying for control of the engine fuel flow (WF ) through the loop
selection logic, which is a series of highest and lowest wins gates (min-max algorithm). The basis of this
technique is to control a primary output utilizing a single control input while keeping up the other intended
outputs below their limits. The proportional and integral gains are taken from a lookup tables. These gains are
tuned in order to provide the required bandwidth and stability margins across the operating envelope.
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Figure 5: Engine fuel control system using min-max controller

In addition, to protect the engine during the acceleration or deceleration operation five manipulated parameters
were used by the ECS to protect engine as shown in Fig. 5. These manipulated parameters are IPVSV, LPVIGV,
LPBOV, IPBOV, and HPBOV. This air system control is used to maintain peak performance and adequate surge
margin during engine acceleration and deceleration.

3 ARTIFICIAL NEURAL NETWORK MODELLING APPROACH

This paper presents a novel methodology for modelling ADGTE using ensembles of NARX neural networks.
This is a general methodology which can be used in generation of accurate, generalized and real time black box
models and has the advantage of greatly reducing the network training time. The flow diagram of the modelling
approach is illustrated in Fig. 6.

3.1 DATA ACQUISITION AND PRE-PROCESSING

The datasets which were used in this study are time series datasets consisting of six input parameters (WF, VIGV,
LPBOV, IPVSV, IPBOV, and HPBOV) and seven output parameters (NL, NI , NH , PW, T30, P30, and TGT )
representing the engine operation from the Synch-Idle or Synch speed (3600 rpm) with no load (unloading)
regime to Synch speed with full load regime (loading). The starting and shutdown regimes are not represented
in this work.

Note that, these datasets were taken at different operation conditions: Tamb , Pamb, LHV and ηth. The ηth was
used to represent the performance degradation of the engine, which is defined as the ratio between the output
shaft energy to the added energy as shown in Eqn. (3)H.I.H. Saravanamuttoo (2017). The only available closed
loop experimental data from testing of SGT-A65 engine was collected at a specific operation condition. More
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Figure 6: The flow diagram of the modelling approach.

data was needed however to train NN models at different operation conditions and use those models to generate
the NN ensemble. To generate data at different operation conditions we used Siemens high fidelity thermody-
namic model. The accuracy of this model has been well validated by Siemens, so combining experimental data
with high fidelity simulated data was the best solution given the limited availability of experimental data. Table 2
shows more details about these datasets, where TR is the training dataset and TS is the testing dataset.

ηth =
PW

WF ∗ LHV
(3)

The experimental time series datasets TR1exp and TS1exp are used for pre-processing operation for extracting
the most valuable information about the system dynamics to use in identification of ANN models. Firstly, the
experimental datasets TR1exp and TS1exp are cleaned by filtering any measurement noise. A simple second
order low pass Butterworth digital filter with cut-off frequency 0.5 Hz was used to remove noise from experi-
mental datasets. After that, cleaned datasets TR1exp and TS1exp were re-sampled at a lower frequency Fs =10
Hz instead of high sampling frequency 20 Hz to avoid aliasing effects and to avoid having the poles of the dis-
crete models being very close to the +1 point on the unit circle. In addition, the lower sampling rate reduces the
number of data points which reduces the computation time during training operation and reduces data collinear-
ity. The selection of the sampling rate was performed based on the Nyquist sampling criterion, which requires
setting the sampling rate at least twice the highest frequency of the system.

3.2 SYSTEM ORDER AND DELAY ESTIMATION

TR1exp and TS1exp datasets are used in this step after cleaning and re-sampling. Selecting the model order
and delay is a key first step towards the goal of identification of non-linear NNs model. A selection procedure
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Table 2: Time series datasets

Dataset NO of
samples

Tamb Pamb LHV ηth

TR1exp 21983 26 101.32 48360 0.32
TS1exp 8117 26 101.32 48360 0.32
TR2sim 15132 30 101.32 47826 0.4231
TS2sim 17231 30 101.32 47826 0.4231
TR3sim 22480 15 101.32 47826 0.4067
TS3sim 12890 15 101.32 47826 0.4067
TR4sim 13172 0 101.32 47826 0.4236
TS4sim 12067 0 101.32 47826 0.4236
TR5sim 16691 -15 101.32 47826 0.4038
TS5sim 8816 -15 101.32 47826 0.4038
TR6sim 8732 30 101.32 35717 0.3931
TS6sim 3700 30 101.32 35717 0.3931
TR7sim 8820 15 101.32 35717 0.4061
TS7sim 12750 15 101.32 35717 0.4061
TR8sim 15044 -15 101.32 35717 0.4092
TS8sim 21065 -15 101.32 35717 0.4092
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frequently is implemented by developing several NN models with different orders and delays and comparing
models to evaluate their performance. However, the influence of NN parameters such as number of neurons,
training algorithm and activation function may lead to an inappropriate selection. In-addition this method is
time consuming. Another approach was used in this paper, which starts by estimation of the time delays from
inputs to outputs nk by using a non-parametric estimate of the impulse response using MATLAB® routine
impulseest. This gives good starting points in identification because it requires minimal user specification Alves
et al. (2013).

Secondly, estimation of the system order by generation of a set of candidate MISO ARX models and determining
the best model order in the set. The ARX model structure is one of the simplest parametric structures and it is
considered a good starting point for identification process because of its simplicity. MATLAB® routine struc is
used to generate a set of model-order combination of MISO ARX model estimation. The routine struc changes
nu and ny for all inputs and outputs from one to five, as higher-order models result in excessive computational
effort and pose the risk of losing particular physical meaning of the model, and uses the input-output delay
values nk from delay estimation step. After that, MATLAB® routine arxstruc uses the set of model order
combination to estimate a set of MISO ARX models based on the TR1exp dataset. The Final Prediction Error
(FPE) evaluates model quality, where the model is tested on another dataset TS1exp. Such a procedure is known
as cross validation. The most accurate model has the smallest FPE. The FPE equation is defined by the following
equation:

FPE =
1 + d

N

1− d
N

V (4)

where d is the total number of estimated parameters and N is the length of the data record. V is the loss
function (quadratic fit) for the structure in question. Finally, checking Pole-Zero Cancellations for this selected
ARX model is performed. MATLAB allows plotting estimated pole-zeroes with their confidence intervals,
which allows you to detect any pole-zero cancellations (confidence ellipse overlap). Removing these provides
a trimmed model order. Table 3 summarizes the results from delay and order estimation process for all MISO
models for all output parameters of the engine and uses these results in the non-linear NN identification process.
This will be illustrated in the next subsection.

Table 3: System order and delay estimation results

Output parameter ny nu nk

NH 4 [4 4 4 4 4 4] [1 0 2 0 0 0]
NI 4 [4 4 4 4 4 4] [1 1 3 0 0 0]
NL 4 [4 4 4 4 4 4] [0 2 1 1 0 0]
PW 4 [2 2 4 4 4 4] [1 0 3 0 0 0]
TGT 4 [1 4 4 1 1 4] [1 0 0 0 0 0]
T30 4 [3 1 4 2 1 1] [6 2 4 3 0 0]
P30 4 [1 2 2 1 1 4] [0 0 2 1 0 0]
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3.3 NARX MODEL CONFIGURATION

This subsection describes the development of multiple MISO NARX models with different configurations to
represent each of the engine output parameters. Constructing the MISO NARX model requires determination of
network parameters. Such as (i) number of neurons, (ii) number of hidden layers, (iii) hidden layer activation
function and (iv) training algorithm. To limit the network complexity, the number of hidden layers is limited to
one. Besides, Cybenko (1989) proved that NN with one hidden layer of hyperbolic tangent or sigmoid activa-
tion function and one output layer of linear activation function could simulate any non-linear system. Another
important parameter in the NARX configuration is the training architecture. The NARX network training can
be implemented via two architectures: (i) series-Parallel architecture (S&Pr), where the network is trained in
open loop mode then transformed to closed loop mode for validation operation, (ii) parallel architecture (Pr),
where the network is trained and validated in closed loop mode. In this paper, to get the optimal NARX model
structure which can represent the ADGTE dynamics, we performed an extensive comparative performance study
using different combinations of NARX neural network architectures, training algorithms and activation functions
while using different numbers of neurons. As a result, a comprehensive computer program was developed in the
MATLAB environment. This program generates 240 NARX models with different structures by performing the
following:

1) Changing of the number of neurons from 1 to 20.

2) Usage of two activation functions logsig and tansig.

3) Usage of three training algorithms trainlm, trainscg and trainbr.

4) Training the network with series-parallel architecture and parallel architecture.

One of the problems that occur during NN training is network over-fitting. The early stopping and cross valida-
tion are the default methods for improving network generalization and reduce occurrence of over-fitting during
the training operation. When the network begins to over-fit the data, the validation error begins to increase, and
after a certain number of iterations, the training is stopped, and the weights and biases at the minimum validation
error is fixed.

In this paper, the network training parameters are defined as: (i) the mean square error (mse) performance func-
tion which is minimized until it reaches a sufficiently low cut-off value of (0.01), (ii) the maximum number
of training epochs (1000) which represents the number of times that all the training patterns are presented to
the NN and (iii) the maximum number of validation increase (100) which represents the number of successive
epochs in which the performance function fails to decrease. Training operation was repeated three times for the
same neural network with the same input data set to increase the accuracy of the network. The TR1exp dataset
is partitioned into 80% used for training the network and 20% used for cross validation. After finishing the
network training operation, the TS1exp dataset is used for testing the network and evaluating its generalization
performance. (RMSE) was used for the evaluation of the network performance in the training and testing opera-
tion. It was calculated for the whole set of data of each output parameter from the NN, and defined according to
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Eqn. (5),

RMSE =

√√√√ 1

N

N∑
i=1

(
ym − y
ymax

)2 (5)

where, ym is the actual output and y is the predicted output. The results of each computation cycle were recorded
in a matrix form which includes the network structure, the root mean square error (RMSE) for training process,
(RMSE) for testing process and training time. Next, the best NN was selected based on the minimum value of
(RMSE) during testing operation. Table 4 summarizes the best MISO NARX models for each output parameters
of the engine.

Table 4: The best MISO NARX models configuration

Output
parameter

No of
neurons

Training al-
gorithm

S & PR / Pr Activation
function

Training
RMSE

Testing
RMSE

NH 2 trainbr S & PR logsig 0 0.0022
NI 3 trainscg S & PR logsig 0.0002 0.0018
NL 2 trainlm Pr logsig 0.0006 0.0007
PW 15 trainscg S & PR logsig 0.0004 0.0107
TGT 11 trainscg S & PR logsig 0.0002 0.0011
T30 15 trainlm S & PR logsig 0.0002 0.0076
P30 5 trainscg S & PR logsig 0.0041 0.005

3.4 ENSEMBLE GENERATION

In this subsection, a homogeneous ensemble for each output parameter of the engine is generated based upon the
best selected structure of the MISO NARX model from the last subsection and diversity among them is ensured
by altering the training datasets which represent different operation conditions. Therefore, the ensemble for
each output parameter consists of eight MISO NARX models with the same structure. Each model is retrained
individually using different training dataset. Which represent certain operation condition. In this work, eight
operation condition datasets [TR1 − TR8] were generated to represent the ADGTE operation space. The
retraining operation is performed in the same way as mentioned before.

3.5 ENSEMBLE INTEGRATION

Now that we have generated the ensemble for each engine output parameter, we move to the next step. How
to combine the identifications that were made for each model in the ensemble and constructing the final output.
Three approaches are used to handle the ensemble integration. Firstly, the basic ensemble method (BEM) defined
by Eqn. (6) below , is a simple approach to aggregating network outputs by average them together. Secondly, the
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median method, which is less affected by outliers and skewed data than the mean one. An outlier is an extreme
value that differs greatly from other values.

fBEM =
1

K

K∑
i=1

fi(x) (6)

Thirdly, a dynamic weighting method (DWM) is considered. Note that, the previous two methods are considered
as a constant weighting methods, while, DWM is considered as a non-constant weighting method. The weights
are adjusted dynamically to be proportional to the performance of ensemble members (MISO NARX models), a
greater weight will be assigned to the ensemble member with better performance. Finally, the proposed HDWM
is performed as follows:

1) Calculation of the performance of each ensemble member as described in Eqn. (7),

ei = (
ym − yi
ymax

)2 (7)

2) Calculation of the median value of the models’ errors

MED = median(e1e2 · · · eK) (8)

3) The weight of each model fi is calculated according to its error as described in Eqn. (9), which cal-
culate the weights in such a way, the model i with error ei around the median value MED receives a
weight close to 1, while models with ei lower than MED have their weights exponentially increased,
and models with ei larger than MED have their weights exponentially decreased.

wi = exp (−ei −MED

MED
) (9)

4) The ensemble output fen is obtained as,

fen =

∑K
i=1[wi(x) ∗ fi(x)]∑K

i=1wi(x)
(10)

5) Calculation of the error of the ensemble output with respect to the real output and comparison of this
with the minimum error from the all ensemble members. If fen < min(e1 · · · eK), then the final
output will be the ensemble output , otherwise , the final output will be equal to the output from the
ensemble member which has the minimum error value.

As we can see, the HDWM is a hybrid method which combines two integration approaches, the fusion approach
and the selection approach. The former, combines the ensemble members outputs in order to obtain the final
output by weighting each model output based on its performance. The latter, selects from the ensemble the most
promising model only.
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4 NEURAL NETWORK BASED NMPC DESIGN

4.1 The Generalized Predictive Control

Generalized Predictive Control (GPC) first introduced by Clarke et al. (1987a) is one of a class of MPC algo-
rithms. This technique is popular not only in industry, but also at universities. A model is the core for any type
of model-based control structures. The model used in GPC design is the controlled autoregressive and integrated
moving average (CARIMA) given by

A(z−1)y(t) = B(z−1)u(t− 1) + C(z−1)
e(t)

∆
(11)

where u(t) is the input , y(t) is the plant output, and e(t) is the white noise. ∆ = 1 − z−1 is the difference
operator. A(z−1), B(z−1) and C(z−1) are the polynomials in the backward-shift operator z−1 with the orders
of ny, nu and nk respectively.

The GPC strategy is based on applying a control sequence that minimizes a quadratic cost function measuring
the control effort and the distance between the predicted process output and desired outputs over the prediction
horizon, i.e.

J (N1, N2, Nu) =

N2∑
j=N1

[ŷ(t+ j|t)− w(t+ j)]2

+Λ

Nu∑
j=1

[∆u (t+ j − 1)]2

subjected to ∆u(t+ j) = 0 when j > Nu

(12)

where ŷ is the predicted output from the system model, andw is the reference output. u(t+j−1) is the sequence
of future control action that is to be determined. N1, N2 are the minimum, maximum horizon, and Nu is the
control horizon. Λ is a weighting factor penalizing changes in the control inputs. The tuning parameters of the
GPC are N1, N2, Nu, and Q, which determine the stability and performance of the GPC controller. Notice that,
N1 ≥ 1, N2 ≥ N1, and N2 ≥ Nu ≥ 1 . In addition, some guidelines for selecting those parameters exit in
Clarke & Mohtadi (1987), Clarke et al. (1987b).

According to Camacho & Alba (2013) the future output value of the system is given by the equation of the
predictor as follows:

ŷ(t+ j|t) = Gj(z
−1)∆u(t+ j − 1) + f(t+ j) (13)

where f(t+ j) is the free response of the system if the input remains to be constant at the last computed value
u(t − 1). While, Gj(z

−1)∆u(t + j − 1) represents the forced response of the system. It relies upon future
control actions yet to be calculated. The polynomial Gj(z

−1) contains the system step response coefficients, as
shown in Eq. (14).

Gj(z
−1) = Ej(z

−1)B(z−1) = g0 + g1z
−1 + · · ·+ gj−1z

−(j−1) (14)

To simplify the following derivation of the GPC control law, let N1 = 1. Now consider the following set of j
step ahead optimal predictions. Then, the predictor in the vector notation can be expressed as:

ŷ = G∆u+ f (15)
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For SISO system, the matrix G is a lower triangular of dimension [N2XNu]. In addition, the first column of
the G matrix can be evaluated as the step response of the system when a step input is applied to the controlling
variable. The cost function Eq. (12) can now be written in matrix form as

J =(G∆u+ f − w)T (G∆u+ f − w) + Λ ∆uT∆u

=
1

2
∆uTH∆u+ bT∆u+ f0

(16)

where the gradient b and Hessian H matrices are defined as

H = 2(GTG+ Λ I)

bT = 2(f − w)TG

f0 = (f − w)T (f − w)

(17)

For unconstrained case, the minimum of J can be obtained by making the gradient of J equal to zero, which
yields to

∆u = −H−1b = (GTG+ Λ I)−1GT (w − f) (18)

As the GPC is a receding-horizon control strategy, only the first control increment in ∆u is applied to the system
and the whole algorithm is recomputed at time t+ 1.

The MIMO version of the GPC is a direct extension of the SISO GPC described above. The matrix and vector
elements are not scalars but vectors and matrices. If m-inputs and n-outputs is considered, then matrix G has
dimension of [n ∗N2Xm ∗Nu], and it can be obtained as:

G =


G11 G12 · · · G1m

G21 G22 · · · G2m
...

...
. . .

...
Gn1 Gn2 · · · Gnm

 (19)

where each matrixGij of dimension [N2XNu] contains the coefficients of the ith step response corresponding to
the jth input. Notice that, the vectors ŷ, f , w have a dimension of [n ∗N2X1], and ∆u vector gas a dimension
of [m ∗NuX1]. The control weighting matrix Λ is with positive elements on its diagonal, i.e.

Λ = diag(Λ1,Λ2, · · · ,Λm)

As can be seen, one of the advantages of MPC is that multi-variable processes can be handled in a simple way.

The advantages of GPC become obvious only when constraints are considered. The constraints acting on a
process can originate from slew rate limits of the actuator, amplitude limits in the control signal, and limits on
the output signals. For SISO system, these constraints can be described, respectively, by

∆umin ≤ ∆u(t) ≤ ∆umax

umin ≤ u(t) ≤ umax

ymin ≤ y(t) ≤ ymax

(20)

where ∆umin and ∆umax are the lower and upper bounds on the future control increment; umin and umax are
the lower and upper bounds on the manipulated input amplitude; and ymin and ymax are the lower and upper
bounds on the process output amplitude.
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To this end, we have to define the predictive control problem (Eq. (16)) as an optimization problem that considers
the constraints present. Therefore, the key here is to formulate the constrained parameters utilizing the ∆u
parameter. In this way, these constraints (Eq. (20)) can be expressed as

Lu∆umin ≤ I ∆u ≤ Lu∆umax

dumin ≤ Tu ∆u ≤ dumax

Ly ymin ≤ G ∆u+ f ≤ Ly ymax

(21)

where Lu is an Nu vector, whose entries are ones; Tu is an NuXNu lower triangular matrix whose entries are
ones; I is an NuXNu identity matrix; and Ly is an N2 vector, whose entries are ones. dumin = (umin − u(t −
1))Lu, and dumax = (umax − u(t− 1))Lu.

Now, the input and output constraints can be merged in a single inequality on ∆u as

MC∆u ≤ dC (22)

where

MC =



I
−I
Tu
−Tu
G
−G

 , dC =



Lu ∆umax

−Lu ∆umin

dumax

−dumin

Ly ymax − f
−Ly ymin + f

 (23)

MC is a matrix representing the constraints with its number of rows equivalent to the number of constraints and
the number of columns equivalent to the dimension of the vector ∆u.

For an m-input n-output system with constraints acting over a prediction horizon N2 and control horizon Nu,
the similar mathematical formula can be derived.

4.2 The Neural Network Generalized Predictive Controller (NNGPC)

An investigation of a novel approach to implement the NMPC based on neural network model is reported in this
study. As can be seen, the design of the GPC demands the construction of a predictor (Eq. (15)). Hence, for the
calculation of the predicted future output ŷ, only two characteristics of the system are needed: step (forced) and
free responses. To obtain the step and the free process responses, which are needed in the generalized predictive
control strategy, we iteratively use an ensemble of MISO-NARX models as a multi-step-ahead predictor.

The proposed control scheme in Fig. 7 composes of a non-linear NN model of the process to be controlled in
the form of ensembles of multiple MISO-NARX models and the GPC algorithm block. This model works as a
predictor which produces the free and forced responses, that are used as an input to the GPC algorithm block.
The GPC algorithm block generates an output that is either utilized as an input to the plant or the predictor. The
double pole double throw switch, S, is set to the plant when the GPC algorithm block has found the optimal
control input, u(k), that minimizes the cost function. Between samples, the switch is set to the predictor where
the GPC algorithm block utilizes this predictor to calculate the next control input, u(k+1), by making prediction
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Figure 7: Block diagram of NMPC system.

of the response over the prediction horizon N2. At the point when the cost function is minimized, the optimal
control input is passed to the plant. This algorithm is outlined below.

An approximation of the predicted future output is given by:

ŷ = G∆u+ f (24)

In this expression at each sampling time the vectors G(t) and f(t) are reconstructed. The free response f
depends only on the past inputs and outputs. Therefore, to get the free response the prescribed predictor is given
a zero increment vector ∆u i.e.

u(t) = u(t+ 1) = · · · = u(t+N2 − 1) = u(t− 1) (25)

Hence, the predictor output will be the system free response.

yfree(t+ i|t) = F (y(t+ i− 1), · · · , y(t+ i− ny), · · ·
, u(t+ i− 1), · · · , u(t+ i− nu))

with : u(k) =

{
u(t− 1), if k > t− 1

u(k), otherwise

(26)

where F (.) represents the NN response.

The estimation of the step response coefficients to construct G matrix is obtained as follows:

gk−1 =
ystep(t+ k|t)− yfree(t+ k|t)

δu(t)

For k = 1, · · · , N2

(27)
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where δu represents the step size, and ystep represents the predictor step response which can be obtained by:

ystep(t+ k|t) = f(y(t+ k − 1), · · · , y(t+ k − ny), · · ·
, u(t+ k − 1), · · · , u(t+ k − nu))

with : u(k) =

{
u(k), if k ≤ t− 1

u(t− 1) + δu(t), if k > t− 1

(28)

The main problem to get a precise estimate of the step response around operating point is to choose a proper
value for the amplitude and the sign of the step δu(t), in light of the fact that the step response of a non-linear
system is determined by the operating point, the magnitude and the sign of the step signal Oviedo et al. (2006).
Therefore, the δu(t) should be chosen near to the predicted ∆u(t). Since this value is just known after the
optimization, a good decision is to choose δu(t) equal to ∆u(t − 1) acquired in the previous optimization step
(t − 1). However, if ∆u(t) = 0 as the system reaches the steady state, Eq. (27) will be badly conditioned.
Consequently, a δumin vector ought to be characterized with the minimum value of δu, so that the estimation of
step response coefficients is reliable.

Once f and G have been obtained from the response of the predictor (ensemble of MISO-NARX models), the
gradient b and Hessian H of the GPC quadratic cost function can be calculated based on Eq.(17). Therefore, by
using this novel approach, the optimization problem can be solved as a linear optimization problem instead of a
nonconvex and non-linear programming problem, that will improve the computation time and reliability of the
solution. In this paper, Hildreth’s quadratic programming algorithm is utilized which offers straightforwardness
and reliability in real time implementation Wang (2009). Besides, Hildreth’s algorithm might be helpful to
execute on non-PC platforms like programmable logic controllers or embedded machine which do not support
linear algebra libraries.

4.3 NNGPC Design for SGT-A65 Engine

The NNGPC is implemented in MATLAB®/SIMULINK environment. As shown in Fig. 8, the NNGPC con-
troller substitutes the seven control loops in the min-max controller by one NNGPC multi-variable controller.
The first objective of the NNGPC is to maintain the low pressure spool speedNL at a certain set point (3600 rpm)
as the generator load changes. The second objective considered is to ensure that NH , NI , TGT , and P30 stay
below its maximum limits so as not damage the gas turbine. These two objectives are achieved by manipulating
three controlling variables: WF , IPV SV , and LPBOV .

In addition to these two objectives, input constraints on amplitude and slew rate of the controlling variables
(WF , IPV SV , and LPBOV ) are introduced, to ensure safe acceleration and deceleration of the engine. In
practice, input and output constraints are not necessarily fixed values. It is possible that constraints change with
a certain parameter variable. Acceleration and deceleration are limited by maximum and minimum allowable
fuel flow request WFmax and WFmin respectively, which are changed based on engine performance. Beside
that, the TGTmax is scheduled according to ambient temperature and relative humidity. This value is used as
the upper limit of the TGT inside NNGPC controller.

In practical situations such as our case, the controlled variables may not be subject to constraints, and the
constrained outputs may not need to be controlled. Based on that, three actuators are used to control a single
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Figure 8: The NNGPC for SGT-A65.

controlled output, namely NL. Four other output variables, namely NH , NI , TGT , and P30 are considered
as constrained outputs. This requires that different sets of G and f matrices must be calculated, according to
whether an output is controlled or constrained.

The proposed NNGPC design comprises of three tuning parameters that should be appropriately tuned to ac-
complish good controller performance. The tuning parameters that influence the closed loop response of the
system include the prediction horizon N2, the control horizon Nu, and the weighting factor Λ. In this study, the
NNGPC tuning parameters are obtained by trial and error.

5 RESULTS

5.1 Neural Model Validation

In this subsection, validation of the generated ensembles for all engine output parameters is performed by using
the testing datasets (TS1 − TS8) in the MATLAB/SIMULINK environment. Note that for space reasons only
figures from NH , PW and NL prediction are presented. Firstly, Fig. 9 shows that the outputs from each model
in the NH ensemble are different from each other, which explains the ensemble diversity. In this work, the input
space is partitioned into eight subspaces, each one represents certain operation conditions, and each model in the
ensemble is then assigned to one of these sub-spaces. In another word, we used a mixture of experts to develop
a homogeneous ensemble which can represent the engine at different operation conditions.

To show the advantages of using an ensemble in the prediction of engine performance instead of using an
individual neural model, we generated a single MISO NARX for each engine output parameters, and trained
them with the same approach as mentioned above. Indeed, concatenated data from different operation conditions
is used for training operation. Fig. 10 to Fig. 13 show the comparison between NH and PW estimated by the
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ensemble of MISO NARX models and the single MISO NARX model. This demonstrates that ensembles of
diverse models aggregated with HDWM method can provide higher accuracy and higher robustness in real time
than the single MISO NARX neural model approach. A summary of comparison results is shown in Table 5.
One can observe that the ensemble model demonstrates a significantly better performance in identification of
the gas turbine engine dynamics than the individual neural model, as it results in an improvement in accuracy of
nearly 90%, compared with the single neural model.

Figure 9: Ensemble models prediction-NH.

On the other hand, in order to verify the performance of the proposed ensemble integration method (HDWM), a
comparative study was performed between four integration algorithms to measure their impact on the ensemble
performance with respect to TS1exp data set. A summary of results of the four integration algorithms presented
in Table 6. Indeed, Fig. 14 to Fig. 16 show estimation of NH , PW and NL by ensemble of NH , PW and NL

respectively with different integration algorithms and tested with TS1exp data set. As we can see, the proposed
HDWM has demonstrated superior performance over the other integration methods.

A summary of the ensemble system performance with HDWM integration method for identification of each of
the seven gas turbine engine outputs is given in Table 7. As expected, the usage of homogeneous ensemble with
HDWM integration method in the prediction of the ADGTE output parameters gave a high prediction accuracy
at different operation conditions.

5.2 NNGPC Validation

To assess the performance of the NNGPC developed in this study, we have compared the response of the NNGPC
controller to that of the existing min-max controller due to the same load disturbance. For this comparison, the
experimental dataset TS3exp has been used. The simulation results of this test are presented in Fig. 17 through
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Figure 10: TS5sim testing results.

Figure 11: TS1exp testing results-NH.
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Figure 12: TS7sim testing results-NH.

Figure 13: TS1exp testing results-PW.
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Table 5: Regression performance [RMSE] of single MISO NARX model and ensemble of eight MISO NARX
models

Output parameter Data set Ensemble Single model

TS1exp 0.00151 0.00500
NH TS5sim 0.00005 0.00280

TS7sim 0.00063 0.00200
TS1exp 0.00043 0.00490

NI TS5sim 0.00086 0.01070
TS7sim 0.00005 0.00380
TS1exp 0.00004 0.02930

NL TS5sim 0.00003 0.01350
TS7sim 0.00006 0.01030
TS1exp 0.00180 0.04930

PW TS5sim 0.00300 0.01440
TS7sim 0.00903 0.02840
TS1exp 0.00351 0.02020

TGT TS5sim 0.00131 0.02480
TS7sim 0.00054 0.03770
TS1exp 0.00389 0.04380

T30 TS5sim 0.00131 0.02480
TS7sim 0.00014 0.07690
TS1exp 0.00004 0.07920

P30 TS5sim 0.005191 0.04000
TS7sim 0.00173 0.02200

Table 6: Regression performance [RMSE] of ensemble of MISO NARX models with different integration
methods.

Output
parameter

HDWM DWM BEM Median

NH 0.00151 0.00005 0.04283 0.02877
NI 0.00043 0.01319 0.03669 0.03482
NL 0.00004 0.00033 0.00534 0.00054
PW 0.00180 0.02960 0.44110 0.07860
TGT 0.00351 0.00926 0.02067 0.03183
T30 0.00389 0.02237 0.05820 0.05870
P30 0.00004 0.00262 0.00240 0.00931
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Figure 14: NH prediction with ensemble by TS1exp data set.

Table 7: Regression performance [RMSE] of ADGTE ensembles at different operation conditions.

Data set NH NI NL PW TGT T30 P30

TS2sim 0.00015 0.00061 0.00008 0.00045 0.00083 0.00021 0.00228
TS3sim 0.00063 0.00011 0.00007 0.00046 0.01713 0.00768 0.00049
TS4sim 0.00052 0.00005 0.00026 0.00200 0.00197 0.00012 0.00208
TS6sim 0.00081 0.00284 0.00103 0.08739 0.00152 0.00121 0.00649
TS8sim 0.00107 0.00082 0.00034 0.00104 0.00390 0.00132 0.00039
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Figure 15: PW prediction with ensemble by TS1exp data set.

Fig. 23 with the summary of comparison results given in Table 8. As can be seen, the NNGPC has demonstrated
output responses with less oscillatory behavior and smoother control actions to the sudden variation in the
electric load than those observed in the existing min-max controller. In addition, both controllers have the ability
to maintain all constrained parameters below the predetermined maximum limits. However, the time constant of
min-max controller response is lower than that of the NNGPC controller, which resulted in faster response by
using min-max controller.

In Fig. 18, the NL achieves 1.087 ( overshoot is 8.7 %) with the NNGPC controller, which is within % 10 of its
nominal value, in accordance with the load rejection test criterion. In addition, the NNGPC controller brought
back NL to its set point value in the course of 4.2 s. However, the min-max controller could bring the response
to the set point value in about 12.79 s with overshoot of 8.4 %.

As shown in Fig. 21 through Fig. 23, the control movements resulted from the NNGPC controller show smoother
variations in WF , IPV SV , and LPBOV parameters than those resulting from the min-max controller. As a
consequence of that, the NNGPC controller requires less control effort than the min-max controller to achieve
the desired objectives. The minimization of controller effort has the capability to decrease the mechanical wear
of the actuators, which could lead in turn to an increase of the functional safety, life time, and economics of the
controlled process.

Moreover, Fig. 21 shows that the fuel flow rate WF calculated by the min-max controller exceeds the minimum
fuel limit during the load rejection test. In addition, The minimum fuel flow limit violation by the min-max
controller may occur as a result of the strong non-linearity of the engine, which can not always be handled
adequately by the classical controller especially during the fast load change. In fact, This result coincides with
the opinion found in recent studies, which have shown that there is no guarantee for min-max algorithm with
linear compensator to protect engine limits during fast transient stateImani & Montazeri-Gh (2017), Montazeri-
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Figure 16: NL prediction with ensemble by TS1exp data set.

Table 8: The controller performance comparison under load rejection test.

Output pa-
rameter

Controller TS (s) OS (%) Time con-
stant (s)

PW
NNGPC 3.22 2.6 1.16
min-max 3.01 11.2 0.01

NH
NNGPC 4.99 n/a 2.7
min-max 3.1 6.17 0.19

NI
NNGPC 3.76 1.2 2.68
min-max 3.12 5.94 0.17

TGT
NNGPC 4.66 1.75 3.18
min-max 9.24 n/a 1.62

P30
NNGPC 1.5 2.97 0.31
min-max 4.1 23.56 0.23

T30
NNGPC 6.1 3.59 2.25
min-max 12.91 n/a 3.1
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Gh & Rasti (2019). However, the NNGPC controller, with the current design constraint, has the potential to keep
WF within its limits.

Figure 17: Comparison between NNGPC controller and min-max controller performance during load distur-
bance - PW .

Figure 18: Comparison between NNGPC controller and min-max controller performance during load distur-
bance - NL.

Finally, the computational efforts required for the NNGPC to execute the calculations of the controller during
this test is 5.153 s, knowing that, the test simulation time is 35.5 s. Therefore, the computation time required to
solve an optimization problem was sufficiently faster than the sampling rate (Ts = 0.01 s) by applying Hildreth’s
quadratic programming algorithm. This efficient algorithm would allow NNGPC to be implemented via real-
time optimization for gas turbine power plants in a fast and robust manner.
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Figure 19: Comparison between NNGPC controller and min-max controller performance during load distur-
bance - TGT .

Figure 20: Comparison between NNGPC controller and min-max controller performance during load distur-
bance - P30.
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Figure 21: Comparison between NNGPC controller and min-max controller performance during load distur-
bance - WF .

Figure 22: Comparison between NNGPC controller and min-max controller performance during load distur-
bance - IPV SV .
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Figure 23: Comparison between NNGPC controller and min-max controller performance during load distur-
bance - LPBOV .

6 CONCLUSIONS

This paper focuses on solving important challenges in the area of gas turbine engine’s controller design to ensure
the safe operation of the engine and at the same time get the maximum performance. The system identification
and advanced control algorithms based on NN methodology were developed to control an ADGTE used in power
generation application under loading and unloading condition. The main results can be summarized as follows;

1) A novel methodology for the development of real time data driven based model of ADGTE was pre-
sented in 3. An ensemble of multiple MISO-NARX neural models was introduced to predict the
ADGTE output parameters in real time. Inspired by the way biological neural networks process infor-
mation and by their structure which changes depending on their function, multiple-input single-output
(MISO) NARX models with different configurations were used to represent each of the ADGTE out-
put parameters with the same input parameters.

2) Estimation of the NN model order by generating different ARX models and estimation of the in-
put/output delay, before generation of NN model, are very important steps. These steps save more
iterations required to find the best structure of the NN and consequently saving more time required for
NN model generation. In addition, data cleaning and resampling step significantly reduced training
time. The lower sampling rate reduces the number of data points, which reduces the computation time
during training operation and reduces data collinearity.

3) Usage of a single neural network to represent each of the system output parameters may not be able
to provide an accurate prediction for unseen data and as a consequence, provides poor generalization.
To overcome this problem, an ensemble of MISO NARX models was used to represent each output
parameter. The major challenge of the ensemble generation is to decide how to combine results
produced by the ensemble’s components. A novel hybrid dynamic weighting method (HDWM) was
proposed to perform this task.

4) This paper was proposing a novel method to estimate the free and forced responses of the GPC based
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on the NN model of the plant each sampling time. It reduces the NNGPC optimization problem to a
linear optimization problem at each sampling step. Therefore, the optimization problem can be solved
using quadratic programming instead of a nonconvex and non-linear programming problem, that will
improve the computation time and reliability of the solution. In addition, the Hildreth’s quadratic
programming algorithm was used to solve the quadratic optimization problem within the NNGPC
controller, which offers simplicity and reliability in real-time implementation. Furthermore, Hildreth’s
method may be useful to implement on non-PC platforms like programmable logic controllers or
embedded machine which do not support linear algebra libraries.

In addition, a larger prediction horizon can make a faster response and better control quality. However,
it will also greatly increase the calculation and affect real time performance of NNGPC controller. So
that, as an indication of forthcoming research, it is intended to use a more systematic approach to
perform NMPC tuning and find the best tuning parameters based on the desired performance char-
acteristics. NMPC tuning is usually performed ad-hoc based on some experience. Most of the time,
several simulation runs are performed to check if the chosen tuning parameters are suitable. Auto-
mated tuning procedures using genetic algorithm can be applied to reduce the manual operations.

As the only available experimental data from the real engine testing was collected at a specific op-
eration conditions, future work will involve looking at the NNGPC controller performance over a
different operation conditions and different transient scenarios and determining what modifications
are required to obtain acceptable robust performance. Also, additional design and analysis will need
to be performed taking into account compressor working line, surge margin, fuel valve micro mo-
tion stability criteria, and over speed analysis of the system. Once the design phase is completed the
results will have to then be validated by implementing it on Programmable Logic Controller (PLC)
with the focus of eventually being able to test it on a real life engine. Thus, even though this novel
NNGPC controller presents promising first iteration results, there is great scope to improve and tune
this controller.

7 PERMISSION FOR USE

The content of this paper is copyrighted by Siemens Energy Canada Limited and is licensed to ASME for
publication and distribution only. Any inquiries regarding permission to use the content of this paper, in whole
or in part, for any purpose must be addressed to Siemens Energy Canada Limited directly.

NOMENCLATURE

ADGTE Aero-derivative gas turbine engine.

ARX Autoregressive with exogenous inputs.

LPC Low pressure compressor.

IPC Intermediate pressure compressor.
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HPC High pressure compressor.

HPT High pressure turbines

IPT intermediate pressure turbines

LPT Low pressure turbines

PT Power turbine

HPBOV Number of opened HPC bleed off valves .

IPVSV Variable stator vanes position % .

IPBOV Number of opened IPC bleed off valves.

LPBOV Low pressure bleed-off valves position %.

LHV Fuel heating value (kJ/kg).

NL The LPC speed.

NI The IPC speed.

NH The HPC speed.

Pamb Ambient pressure.

P30 The HPC exit pressure.

PW The engine shaft power.

RMSE Root mean square error.

Tamb Ambient temperature (C).

Pamb Ambient temperature (kPa).

T30 The HPC exit temperature .

TGT The intermediate turbine exit temperature.

trainbr Bayesian regularization training algorithm.

trainlm Levenberg-Marquardt training algorithm.

trainscg Scaled conjugate gradient training algorithm.
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VIGV Variable inlet guide vanes position %.

WF Fuel flow rate (kg/s).

ηth Thermal efficiency.
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